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The Genetic Contig Assembly Algorithm (GCAA)

Operation of GCAA on an a Priori Contig

We illustrate the process using the following contig of five clones:
l—
2—
3—
4—
5

–* Set-up. Estimate the length of the selected contig from estimated clone lengths and
overlap extents in the map-objective database. Then randomly arrange the five clones
to make a population of hundreds of GCAA-chromosomes, subject to two constraints:

1. Clone lengths must be within a given margin, usually 10 percent, of the
estimated clones lengths.
2. CGAA-chromosome lengths must be no greater than 110 percent of the
estimated contig length.

t

Tournament. Randomly select a tournament of four GCAA-chromosomes, as shown
below. (In these depictions, vertical postion is irrelevant.) Select the two most
disparate GCAA-chromosomes in the tournament for mating.

A (Parent 1) B

2 1 2

1 3— Y—

—5 4 5 4

c D (Parent 2)

1 2 2 1.— ——
5 5

3 4 3 4

Mating Procedure. Arbitrarily divide the clones in the parental GCAA-chromosomes
into two subsets (shown as black and red), Generate “recombinant” children from the
parental chromosomes by exchange of, say, the two subsets of black clones. Note that
children can have very different patterns of overlap from those of the parents.

Parent 1 Parent 2

2 2 1

1
——

3— s

—5 4 x 3 4

Child 1 / Child 2

2 2 1

1 Y
——

3

3 4 5——

+
‘+ Evolution. Evaluate the fitness of each tournament member and each child, based on

the map objectives, Eliminate the two least fit, and place the survivors in the
population. In the example, chromosome C and Child 2 are eliminated; chromosomes
A, B, D, and Child 1 survive,

Select a new tournament at random and repeat. When the fitness of a child exceeds a
simple estimate of the expected fitness, or the number of iterations reaches 5,000
times the number of clones in the contig, save the fittest GCAA-chromosome for
display and editing.

!

I

1

1

—
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The mating scheme is described in more
detail in Figure 4.

After carrying out the mating, GCAA
evaluates the fitnesses of the two child
chromosomes. If some child’s overlap
and overlap-extent scores are both
greater than or equal to those of any
of the original four members of the
tournament, then that child replaces the
least fit original member. (If both scores
of the two chromosomes are equal, the
clone-length score breaks the tie—its

only function in the whole procedure.)
The remaining four chromosomes are
returned to the pool, and a new tourna-
ment is selected. The process is repeated
thousands of times, after which the
fittest GCAA-chromosomes, for most a
priori contigs, agree quite well with the

data. In practice, experienced users can
often improve the output of the genetic
algorithm by making small changes.
However, few if any people could start
from scratch with a sizable number of
objectives and produce a result that
needed only minor changes.

GCAA has been successfully used
at Los Alamos to construct or improve
large portions of the chromosome-16
physical map. At the current time, the
strategy for completing the map is based
on extending contigs in a highly directed
way by “walking off the ends” (see “The
Mapping of Chromosome 16”). Thus it
is particularly crucial right now that
we have a computational method to
deduce as well as possible the correct
arrangement of the clones in all contigs.

New data on the chromosome-16 map
are, of course, accumulating daily. So it
is essential to be able to apply GCAA in
real time. At Los Alamos, H. Brown has
built a graphical interface called map_ed
for the GCAA algorithm which allows
a user to retrieve map objectives from
the database, run GCAA, and display or
print the resulting map. Thus as new
information accumulates, it is always
possible to see its effect on the emerging
map. Map_ed is being replaced by a
more versatile system called SIGMA
(discussed below).

Integration: one map is better than
many maps. In everyday life one
occasionally needs to use several maps
of a region at one time, for example a
state highway map, a map of a national
forest, and a contour map of part of the
forest. Each map is at a different scale
and has different information, so all are
needed.

The same situation obtains with
genome maps, but while handling sep-
arate geographic maps is only incon-
venient, with genome maps the map-
construction process (which of course is
foundational) is made much less accurate
by having the data collected and ar-
ranged piecemeal. In fact, separate maps
are all intertwined and all incomplete,
and any one can be better assembled
with information from all the others.

Many current map-management sys-
tems have no graphical component at
all. Of course this considerably lessens
usability. The two systems that do have
a graphical interface (Encyclopedia of
the Mouse, developed under the leader-

Figure :5. A Screen in Map_ed
Given the number of a starting clone, map_ed deduces the a priori contig containing that clone, retrieves the corresponding objectives

from the ,database, and computes the map of the contig using GCAA. The map is displayed and may be edited, printed, and saved.
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ship of J. Nadeau of Jackson Laboratory
in Maine, and ACEDB, developed by
J. Thierry-Mieg of the Centre National
de la Recherche Scientifique in France
and R. Durbin of the Molecular Research
Council in Britain) manage a set of
related maps in a graphical electronic
“book,” but do not integrate all the data
for one chromosome into a single map.

We have developed a map-management
system (described in “SIGMA: System
for Integrated Genome Map Assembly”)
that gives a more integrated approach
in two senses. First, map fragments
given in different units are all stored
as part of a single map structure, with
a screen display that can be switched
from one unit to another. And second,
the experimental results, as summarized
in the map objectives, are stored along
with the map, so that the map can be
evaluated or revised on the basis of
the original data at any time. SIGMA
has a graphical interface in the spirit of

Computer-Aided Design/Manufacturing
systems, in that it represents and allows
manipulation of the data in a way that is
close to the human conceptual model.

In the stage of widespread ap-
plication, Electronic Data Publish-
ing makes communication efficient.
Getting information from producer to
consumer can easily cost more, in time,
energy, and money, than generating
the information in the first place. This
is partly due to the massive amounts
of information in the modern world.
BUI: it is also due to an increase in the
number of places one must look: the
number of possible pairwise interactions
among IV people is proportional to
JV2. The modern information explosion

creates a widespread need for a network
infrastructure which makes saving,
finciing, and retrieving data as cheap
as possible.

A case in point is GenBank, an
international collection of nucleotide
sequence data managed at LANL for

the last decade. The exponential growth
of GenBank, described in “Decades
of Nonlinearity: The Growth of DNA
Sequence Data,” has been due in part to
the spread of sequencing as a singularly
effective means of enquiry, and also to
continual improvements in the efficiency
of sequencing techniques. As sequenc-
ing became more efficient, GenBank
had also to continually improve the
efficiency of the data-entry process, or
else merely collecting the data would
have taken an ever increasing share of
the community’s resources.

GenBank pioneered in making use
of the whole community’s expertise to
greatly increase the efficiency of the
data-collection effort. How this was
accomplished is described in “Electronic
Data Publishing in GenBank.”

The main issue in retrieval is avail-
ability. Currently many people in the
GenBank user community are retrieving
data from copies of GenBank updated
by hand on local machines—copies
that are often months out of date.
These users fail to benefit from the
rapid entry of newly available data
into the central GenBank master copy.
However, the same software that enabled
us to implement the Electronic Data
Publishing paradigm allowed us to
easily log all changes to the database
and send the resulting logs to so-called
satellite copies of the database, thus
updating those copies automatically.
This mechanism provides a means by
which an arbitrary number of copies
of GenBank around the world can be
brought up to date daily.

Even more difficult than keeping

many databases and database copies up
to date is the problem of selection and
retrieval: data are only available if one
can find them. For the average user it is
a significant problem to find out which
database(s) might contain the needed
data, and then tinding out how to query
the relevant database(s). The problem

is compounded when the answer to a
user’s question is spread across a number
of related databases—for example map
information for a gene might be found in
the Genome Data Base at Johns Hopkins
University, the sequence of the gene in
GenBank, and related literature listed
in MedLine at the National Library of
Medicine.

This suggests that a key current
need in information management is
to make a large number of disperse
and independently maintained databases
appear to users as a single collection
with a single query language.

Both academic computer scientists
and commercial vendors have made
inroads on actually integrating multiple
databases, each with some autonomy,
into what appears to users as a single
virtual collection. However at present
the multiple databases must all be
managed by the same vendor’s software
for this to be a workable solution.

At present several groups in the
molecular-biology community do pro-
vide partial solutions to this problem.
One approach, implemented, for exam-
ple, in the Chemical Substances Infor-
mation Network system developed by
the Computer Corporation of America,
the National Library of Medicine, and
Bolt Beranek and Newman Laboratories,
is to make a smart piece of interface
software that incorporates a great deal
of knowledge about many individual
databases. The difficulty is that as the
world changes this kind of software
requires a great deal of expensive
maintenance. Another, more common,
approach is to import copies of many
databases to a single machine, and
convert them all to a single format.
Here, again, updating the collections
and maintaining the format conversion-
software is a continuing difficulty.

In data collection, Electronic Data
Publishing led to a great increase in ef-
ficiency by decentralizing responsibility
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SIGIMA: system for integrated
genome map assembly

Michael J. Cinkosky, James W. Fickett, William M. Barber, Michael A. Bridgers, and Charles D. Troup

With high-quality road maps available at stores everywhere, it is easy to forget

just how much effort went into the production of the first accurate geographical

maps. Even maps only a few hundred years old contain glaring errors, such as the

early maps of North America that show California as an island. However, when one

considers how difficult it was to obtain accurate information on which to base those

maps, one can understand why the maps were so inaccurate. The human genome is

at present about as difficult to explore as that early wilderness was.

Although biologists have for some time been able to examine small regions in great

detail, they are only now developing the experimental techniques that will allow the

generation of reasonably detailed maps of each chromosome. Even now, data on

the lengths of map elements and the distances between them are too fragmentary

to use in building precise maps of entire chromosomes. In fact, with fragmentary

data coming from many different types of experiments where even the units of

measurement are incompatible, the present situation is remarkably similar to that of

early cartographers who relied on the (doubtless contradictory) reports of numerous

travelers returning from the area being mapped.

Unlike earlly explorers, however, biologists today can bring the power of computers

to bear on the problem. To this end, we are producing a special-purpose tool for

building accurate genome maps called SIGMA (System for Integrated Genome Map

Assembly ),, SIGMA applies several modem ideas including object-oriented databases,

optimizatic,n theory, genetic algorithms, and interactive computer graphics.

Building maps in SIGMA involves two basic activities: collecting information and

drawing working maps (representations of the structure of the genome that are in

reasonable agreement with experimental data). At the heart of the SIGMA system is

an object-oriented database that stores all the data used in the map-building process,

including all of the (potentially inconsistent) data on which the maps are based.

Maps in SIGMA can be constructed either automatically (by routines discussed

below) or by users. The primary interface to SIGMA is the interactive graphical

map editor shown in the figure on the next page. With this editor, users can see the

positions assigned to map elements and change the positions to build or improve

maps. The editor works like computer-aided drafting and design tools to let users

easily view and edit the map without requiring them to understand the structure of

the database in which the map is stored, Furthermore, because the software was
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A SIGMA window is shown above as it

might appear on a user’s computer screen.

The window contains the SIGMA map

canvas, here showing a portion of a map

of human chromosome 16. The display

includes several different types of map

elements: chromosome bands (thick bars

at the top of the canvas), chromosome

fragments from hybrid-cell lines (thin blue

lines), anonymous DNA markers from the

Genome Data Base (red bars), cosmid

clones from the Los Alamos mapping

effort (orange bars), YACS (blue bars),

genes (green bars), and fragile sites (black

bars), (The clones and fragile sites are not

drawn to scale in this view because they

would be too small to see.)

designed explicitly for genome maps, users have a wide choice of styles in which

maps can be displayed, depending on the particular question of interest.

One problem in integrating genome maps is that conversions between the various

units employed vary from one region of the chromosome to another and are even

non-linear. In SIGMA, the different scales are integrated by dividing the map into

regions of arbitrary size in which users can specify linear conversions between

various units. For instance, in one part of the chromosome a centimorgan (the

unit of genetic distance) may be set equal to a million base pairs, while in another

part a centimorgan may correspond to half a million base pairs. Users can freely

change the units in which the map is displayed. In the figure above the chosen

linear scale is spatial distance along a metaphase chromosome as observed under a

microscope. Therefore SIGMA shows element lengths and inter-element distances

given in base pairs, say, according to the conversion between base pairs and spatial

distance assigned for the part of the chromosome in which the elements lie.

SIGMA handles the problem of fragmentary data by treating the map-assembly

process as an optimization problem. In optimization theory, one is presented with

a number of (possibly inconsistent) statements that should be true about a solution

to a particular problem. These statements, perhaps in conjunction with estimates of

their certainty, are called “objectives”. The goal is the generation of one or more

solutions that satisfy the objectives as well as possible.

For genome maps, an objective is typically either a statement about a single element in

the map (such as, “This YAC is about 400,000 base pairs long”), or a statement about

the positional relationship between two elements (such as, “These two clones probably

overlap by about 10,000 base pairs”). Even a map of only modest complexity can

be based on literally millions of such objectives, far more than a human can sensibly

handle. SIGMA, on the other hand, easily tracks this quantity of information and

can help users find maps that meet the objectives as closely as possible. The figure

opposite shows the user’s view of how SIGMA manages objectives.
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SIGMA: Element Properties ‘II

Type:

Name:

Description:

Left End:

Min. Length:

Relationships:

Relationship:

Min. Dist:

Source:

L

S Cosmid Clone

S33

I from Los Alamos flow-sorted library

0,03548 Right End: 0.3551

Objectives

28500 ~ bp Max. Length: 4100

Cell Line CYI 8 (Contained Within -.98)

Cell Line N-BH8B (Contained Within -,98)

Ceil Line N-TH2C (Contained Within -.98)

Cell Line CYI 5 (Does Not Overlap -.98) II
Cell Line CY185 (Does Not Overlap -.98)

Cell Line CY165 (Does Not Overlap -

Cell Line CYI 60 (Does Not Overlap -.98)
I—J

~ Contained Within Likelihood: .98

SIGMA includes special optimization routines to automate map assembly. (The

routines currently use only objectives concerning clone lengths, clone-overlap

probabilities, and lengths of overlaps, which are the data used in constructing contig

maps.) The optimization is performed by algorithms inspired by natural genetics,

called “genetic algorithms”. (See the discussion of genetic algorithms in the main

text.) Whether a map was made by the optimization routines or by hand, SIGMA can

automatically evaluate how well it fits the objectives. Thus the user can edit the map

interactively, seeing how each change affects the map’s agreement with the data.

As the map grows and new data become available, the collection of map objectives

grows. Old objectives are never discarded unless a user explicitly deletes them.

Because the objectives can be passed along to other users as part of a map, subsequent

users of the map have access to all the information on which it is based, allowing

them to make their own judgments about the correctness of the conclusions. This

ability is very important when one laboratory’s data appear to conflict with prior

results from another group. Instead of being limited to the final product of the earlier

work, the second team can look “inside” the map, examining the assumptions on

which the map is based to find the specific causes of discrepancies.

To demonstrate how SIGMA handles

map objectives, one element, clone S33,

has been selected in the map canvas;

consequently its properties appear in the

Element Properties Window (left). That

window displays, in addition to the type,

name, and description of the element, the

graphical coordinates of the element in

the canvas and some of the objectives

involving the element. The first two

objectives shown give the minimum and

maximum lengths of clone S33 consistent

with experiment. The objectives that

follow state relationships inferred from

experiments in which clone S33 was

hybridized with a panel of hybrid-cell

lines, each containing only a portion of

chromosome 16. For each hybrid-ceil line

that the clone hybridized with, an objective

has been created indicating that the clone

lies within that chromosome fragment.

For each hybrid-cell line that the clone did

not hybridize with, an objective has been

created indicating that the clone and that

chromosome fragment do not overlap. All

those objectives have been assigned a

0.98 probability of being correct, based on

the uncertainty of the experiments. Finally,

the last two distances in the window are

the maximum and minimum values of

the distance between the left endpoint

of the clone and the left endpoint of the

highlighted hybrid-cell line. (If the two

elements overlapped, the length of the

overlap would be given; if they did not

touch, the distance between them would

be given.)

Finally, SIGMA was designed from the beginning to be used with Electronic Data

Publishing (see the sidebar “Electronic Data Publishing in GenBank” immediately

following). Not only can users easily share data with other SIGMA users, but they

can prepare submissions to the public mapping databases with just a few keystrokes. H
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Electronic Data Publishing in GenBank
Michael J. Cinkosky, James W. Fickett, Paul Gilna, and Christian Burks

I mprovements in DNA-sequencing technology in the mid- 1970’s enabled re-

searchers around the world to determine the exact sequence of nucleotides in sampl[es

of DNA much more easily than before (see “Decades of Nonlinearity: The Growth

of DNA Sequence Data” above). Computers were the most convenient way to

handle the large quantities of sequence data discovered using the new methods.

Furthermore, since many people became interested in applying computer technology

to interpreting those data, the data needed to be readable by computers. To meet

those needs, Walter Goad created the Los Alamos Sequence Library in 1979, which

in 1982 became GenBank.

Like many scientific databases at that time, GenBank was designed as a curated

data repository. For its first several years of operation, the data were collected from

published articles containing DNA sequence data in figures. The sequence data and

related annotation (for example, information about the function and structure of the

sequence) were typed into a computer and formatted into complete database entries,

which were then distributed to users in both electronic and printed form.

The limitations of this style of operation became obvious fairly early. The volume of

data being generated continued to grow dramatically. It became increasingly difficult

for the database staff to keep up with the flow of data, and the delay between

publication of an article and appearance of the data in the database grew accordingly.

At the same time, the data were becoming increasingly important to biologists, which

aggravated the problem of slow turn-around time for data processing.

Another problem was that a growing body of data would never, as the situation stood,

appear in the database because h would never appear in print. Journals were already

beginning to limit the amount of space that they would devote to printing nucleotide

sequences; therefore, authors began omitting “uninteresting” sequence data (such as

introns and other non-coding regions) from their papers. For computational biologists,

however, those data are potentially of great interest and not having them in the public

database would severely hinder some types of studies. Furthermore, in 1986 both

the DOE and NIH began to talk about the Human Genome Project. If undertaken,

that project would result in the generation of at least a thousand times the quantity

of data that was already in the database, and probably far more. It was becoming

critical to develop a different approach to building and maintaining the database.

Electronic Data Publishing
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Reconsidering the problem made it clear that sequence data and results based on those

data should be handled by completely separate communication methods. Whereas
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scientific results needed peer review and an essentially free-form

medium like the printed page, sequence data needed a largely

automatic form of quality control and a highly structured,

electronic format to be useful. To meet this need, we created

what we call Electronic Data Publishing.

In Electronic Data Publishing, the originators of the data retain

responsibility for the data in much the same way that they retain

responsibility for the contents of published articles. Rather than

being communicated primarily through journal articles, the data

are deposited directly into an electronic database, and a separate

article referring the reader to the appropriate database entries is

published in a traditional journal. The database staff provides

tools to help the originators get their data into the database, as

well as software to provide automatic checks on the quality and

integrity of the data.

To speed the transition to this new model, we enlisted the aid

of many of the editors of the journals in which most of the

sequence data were appearing. Because they were as acutely

aware c~f the problems as we were (they were particularly

interested in reducing the number of pages devoted to the

printing of sequence data), many agreed to require submission

of the data to the database before a paper discussing the data

could appear in their journals. Within a year we were receiving

a significant percentage of our data in electronic form before

the related article appeared in print.

Table 1. Divisions of GenBank

Division Number Change in Number Change in
of number of of number of

entries entries bases bases
(June since (June since
1992) March 1992) March

1992 1992

Bacteriophage 779 18 1,102,766 -13,8801

Other viruses 7,750 1,238 11,883,566 1,007,715

Bacteria 7,965 760 13,732,370 1,290,821

Organelles 2,241 130 3,721,811 409,921

Plants and fungi 6,196 682 10,713,664 1,436,907

Invertebrates 6,079 868 8,422,573 977,127

Rodents 12,737 909 13,942,988 964,730

Primates 15,996 1,257 17,258,180 1,620,375

Other mammals 2,660 215 3,537,274 355,010

Other vertebrates 3,250 276 3,915,314 342,341

RNA 2,698 162 1,517,776 134,686

Unannotated 1>649 -3602 1,532,138 -297,0092

Synthetic3 1,282 27 857,738 42,302

Total 71,282 6,220 92,165,158 8,270,506

Implementation of the Electronic Data Publishing model also required the devel-

opment of a large software system with several major components. First, we

designed and built a relational database to store the data in a far more structured

manner than was practical with our original ASC!II-text database format. Then we

built an interactive, window-based interface to this database, called the Annotator’s

WorkBench, which enables people to work directly on the contents of the database.

We also worked with the European Molecular Biology Laboratory and the DNA

1As part of our curation of GenBank, we often combine duplicated sequence data into a single
represental.ion. In the Bacteriophage division between January and March 1992, the amount of data
submitted was less than the amount of duplicate data merged, so the net change during that period
was a decrease.

2The Unannotated division of the database was formerly used to distribute data quickly by releasing them
to the public in raw form prior to the more detailed work of annotation. No data have been added to this
division for some time. We continue to relocate sequences from this division to their appropriate taxonomic
division through annotation, resulting in a decrease of the amount of data classed as unannotated,

3S~nthetic DNA includes such laboratory-constructed DNA as short oligonucleotide pI’ObfX, CIOn@

vectors, expression vectors, synthetic genes, etc., which cannot readily be considered as originating from
single taxc,nomic species.
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Table 2. Amount of Sequence Data from Well Studied Organisms

Number of Percent
genome of total

Bases equivalents data in
Organism sequenced sequenced database

C, e)egans (nematode) 0.54x 106 0.007 0,7

E. co/i (bacterium) 2.81 X 106 0.597 3.6

S. cerevisiae (yeast) 2.95 X 106 0,203 3.8

D. rrte/armgasfer (fruit fly) 3.02 X 106 0,018 3.9

M. r77uscu/us (mouse) 6.89 X 106 0.002 8.9

H. sapiens 13.44 X 106 0.005 17.4
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Databank of Japan to develop systems for sharing

data, so that researchers need enter data into only one

of the three databases. Finally, we created a format

for automatically processable database submissions

and wrote software to aid in the preparation of these

submissions, which is distributed freely to anyone

requesting it. Data submitted in that format are run

directly into the database, where the database staff can

easily use validation software that we have written to

check the data for biological consistency. (As a simple

example, the software checks that exons do not contain

stop codons).

The impact of these changes on our operation has been

dramatic. We now receive about 95 percent of our

data directly from researchers, mostly in automatically processable form. In 1984,

we processed sequences containing approximately 1.38 million nucleotides. At that

time, it was taking, on average, more than one year from publication for data to

appear in the database at a cost of approximately $10 per base pair. In 1990, we

processed 10 times as much data (about 14.1 million nucleotides) with an average

turn-around time of two weeks at a cost of roughly $0.10 per base pair. Further,

we have been able to maintain this performance since 1990, despite the fact that

the rate of submissions has more than doubled to 30 million base pairs per year

in the first half of 1992.

A brief survey of the contents of GenBank indicates the extent of sequence data

and the areas in which biologists have been particularly interested. Table 1 shows

the contents as of release 72 (June 1992) broken down by taxonomic and other

categories of origin. Approximately half the data are from expressed regions, the

rest being primarily introns and sequences immediately upstream and downstream

of genes. A new development is the submission of thousands of rough sequences,

each a few hundred base pairs long, from human cDNAs (see pages 136–139 in

“Mapping the Genome”),

About 2850 organisms (including viruses) are represented in GenBank. The only

completely sequenced genomes are from viruses and cell organelles (mitochondria

and chloroplasts), ranging in size from a few hundred base pairs for certain plant

viruses to more than 200 kilobase pairs for the cytomegalovirus. Table 2 gives

information (as of December 1991) on the organisms to which the most sequencing

effort has been devoted. (The heading, “number of genome equivalents,” means

the ratio of the number of bases sequenced from that organism to the number in

its genome, without the subtraction of any duplications in the database.) In one

notable recent change, the amount of sequence in the database from the nematode

Caenorhabditis elegans increased by a factor of about 7.7 between December 1988

and December 1991, 2.5 times larger than the increase of the database as a whole. m
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for the data. The idea of using computer
networks to decentralize information
management and place responsibility
for different tasks wherever these tasks
may most efficiently be placed, we term
Commonwealth Informatics. We think
Commonwealth Informatics will be an
important strategy for many aspects

of managing information in the next
decade.

For retrieval from multiple databases,
Commonwealth Informatics would be
implemented by building multi-database
access software that depends on a single
protocol for integrating databases across

the network, while leaving the connec-
tion between the multi-database access
system and the individual databases up
to the team at each database site (for
example, GenBank and GDB). Aside
from the software development, the
only centralized component of this
retrieval scheme is an index to the
available databases and the kinds of
information in each. A first step in this
direction is the Listing of Molecular
Biology Database (LiMB), a database
of databases cumently maintained by
G. Redgrave under the direction of
C. Burks at Los Alamos.

We are beginning
ito read the genetic

to learn
program

As DNA sequence accumulates and
is made widely and flexibly available
by means of networked databases,
significant progress is being made in
learning to read the genetic programming
language, The fundamental question is
this: given the sequence of some region
of the genome, can we discern where the
genes are, under what conditions they
are expressed, and what the function of
the products might be?

Even very simple and partial answers
to these questions have great practical

importance. For example, until a few
years ago diabetes was treated with
either porcine or bovine insulin, avail-
able as by-products of the meat indus-
try. Now human insulin is routinely
made by means of a synthesized gene
implanted in a genetically altered bac-
terium. (Though this artificial human
insulin is widely used, not everyone
agrees that it is an improvement over
animal insulin. Some studies indicate
that artificial human insulin produced in
genetically engineered plants may un-

1

dergo more human-like post-processing
of the protein product than artificial
insulin produced in bacteria.) While
the protein products of the synthetic
bacterial gene and the natural human
gene are identical, the two genes are
quite different. In fact, the natural
human gene would not e~en function
in a bacterial cell. The human gene
has two introns; because bacteria cannot
excise introns, the synthetic gene must
have none. The human gene has control
elements that turn on the gene only
when needed. The bacterial version
has a control element that maintains
maximum production levels at all time.
Even the codons that are used in the
synthetic gene, while specifying the
same sequence of amino acids as those
in the natural gene, have been chosen
to maximize the rate of production.
The design and implementation of
this synthetic gene is made possible
by a very incomplete, but still very
powerful, understanding of the bacterial
programming language.

Again, many genetic diseases are far
better understood now than they were
only a few years ago, because the region
of the genome in which the defect lies
has been located and the cause of the
disease studied directly. Sickle-cell
anemia results from a single-nucleotide
change in the alpha hemoglobin gene
(a 0.0000000002 percent change in the
genome). The gene whose corruption

L
Intron

Natural gene .,. GCA GAG GAC CTG CAG GIGTGAG... GGCAGITG GGG,..

I ~~
Artificial gene ,,. GCT GAA GAC CTT CAA GTG GGT,..

Common product . . . Ala Glu Asp Leu Gln Val Gly,..

Figure 6. Comparison of Part of the Natural and Artificial Human Insulin Genes
The regions of the natural gene just preceding and just following the second intron are shown, along with the corresponding part

of the artificial gene. The intron has been deleted in the latter. Note also that the two genes have different sequences, but the

same protein translation.
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Sequence 1 Sequence 2
ACAGTGA ACATAA

Possible alignment

AC AGTGA

ACA-~A~
in~e, ~ L mismatch

Fi!~ure 7. A Simple Alignment
Shown is one possible alignment

beitween the two sequences ACAGTGA

and ACATAA. In order to match bases

near each end, a deletion has been

introduced in the second sequence

(shlown by ‘-’). A horizontal line between

the! two sequences indicates a matching

base; a space indicates a mismatch.

causes cystic fibrosis was located in
1989, and the change in function of the

encoded protein is now being elucidated.
Several specific forms of gene therapy,
in which the defective region of the
genome is repaired, are being tested in
clinical trials. One important component
of elucidating and treating genetic
defects is the computational technology
for analyzing sequence data to find and
interpret genes.

The tool most used for analyz-
ing sequence data is calculation of
similarity. When a gene is newly
sec[uenced it is very desirable to discover
its biochemical means of action. The

state of our knowledge does not allow
us to predict the enzymatic activity of a
protein fi-om its sequence, but we often
can shed important light on the function
of a newly sequenced gene by comparing
it with all other known sequences (as one
who is just learning a foreign language
can guess at the meaning of a phrase
by comparing it with similar sounding
known phrases). If there is a similarity to
some gene that has already been studied,
anything known about the biochemistry

of the previously sequenced gene may
help decipher the workings of the
newly sequenced one. Of course,
such comparison normally suggests
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hypotheses and further experiments,
rather than completely elucidating the
function of the sequence.

There are a number of difficulties in
finding meaningful alignments between
pairs of sequences. At the root of these
difficulties is the fact that biologically
meaningful alignments contain both
mismatches and indels (short for “in-
sertions or deletions”). Figure 7 gives
a simple example of an alignment; a
longer example without indels appeared
in Figure 2.

The most basic alignment algorithm
is the so-called dynamic-programming
algorithm, first described in print by
S. Needleman and C. Wunsch, and still
widely used in several variations. The
purpose of this algorithm is to find
that alignment which has the lowest
cost, where the cost is the number of
mismatches times a preset mismatch
penalty, plus the number of indels
times a preset indel penalty. If the
sequences are A = al a2 . . . aM and
B = b1b2. b~, the algorithm proceeds
by calculating inductively all optimal
alignments between initial segments of
A and initial segments of B. That
is, let An> be the string consisting of
the first m characters of A (where
1 < m < M), and B. be the string
consisting of the first n characters of B
(where 1< n < IV). Then the algorithm
calculates the best alignment between
every Am and every B. by extending
shorter alignments one base at a time.
The scores of those alignments can be
laid out in an M x 1~ matrix in which
the (m, n) element, in the (m + l)st
column and (n+ 1)st row, is the optimal
score for aligning the first m characters
of the first (top) sequence with the first n
characters of the second (side) sequence.
Figure 8 shows such a matrix.

The first alignments constructed are
the trivial ones between the Am’s and the
empty sequence as well as those between
the B.’s and the empty sequence; their

scores are the costs of deleting those
segments, which are the indel penalty
times m or n respectively. Those
scores appear in the top row and left
column of the matrix in Figure 8. The
remaining alignments and their scores
are calculated as follows. The best
alignment between Am and B. is the
best of these three possibilities, all based
on previously calculated alignments
between shorter sequences: (1) the
best alignment of Am_ 1 with B._ 1,
followed by a match or mismatch of
am with bn, or (2) the best alignment
of Am with B._ 1, followed by the
deletion of bn, or (3) the best alignment

of Am_ 1 with B., followed by the
deletion of am. Constructing all the
alignments of initial segments results in
calculating the best alignment of A with
B as the culmination of the process.
Figure 8 shows how the process aligns
the sequences in Figure 7.

Quite different optimal alignments
may result, depending on whether un-
translated gene (nucleotide) or translated
protein (amino acid) sequences are com-
pared, and depending on what scoring

scheme is used. Current consensus is
that the most functionally meaningful
alignments between related genes are
found by aligning protein sequences
with a scoring scheme that takes into
account chemical similarity between
different amino acids.

Speed is a major concern in search-
ing databases for similar sequences.
When a sequence is newly determined,
the investigator will normally want
to compare it to every sequence in
GenBank, both to find out if the DNA
fragment has been sequenced before,
and to try to discover the function of
the DNA sequenced by comparison
with other, related, sequences (from
the same or different organisms). The
straightforward dynamic-programming
algorithm described above would, if
applied to a typical sequence of 1000
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bases, take on the order of a day on the
fastest general-purpose single-processor
computers. Faster response time is very
desirable, so considerable effort has gone
into accelerating comparison between a
single “query” sequence and a database.

Specialized hardware can greatly in-
crease the speed of searching a database.
For example the problem is almost
trivially parallelized: R. Jones of Think-
ing Machines has written algorithms,
for the CM2 connection machine with
64,000 processors, that split the database
among the processors so that each
one only does a few comparisons. In
another direction, T. Hunkapillar of the
California Institute of Technology has
implemented the dynamic-programming
algorithm in hardware, producing the
so-calledl BISP (Biological Information
Signal Processing) VLSI chip. The BISP
chip is nlot yet widely available, but is
reported to be capable of comparing a
query sequence (of any length) against
a database at the rate of 12,000,000
database nucleotides per second. This
makes database access, rather than
algorithm speed, the rate-limiting step
for most applications.

Databases are most often searched on
personal computers and workstations.
Thus anc)ther approach that has been
extensively pursued is to narrow the
semch and make detailed searches only
in promising areas. First the database is
pre-indexed by making a so-called “hash
table” of all “words” (subsequences) of a
given length (typically 4-10). Then each
time the program is run, all locations in
the database of all words of the chosen
length from the query sequence are
found using the hash index. Finally,
where there are promising “clumps” of
matches, more detailed comparisons are
made using the dynamic-programming
algorithm. W. Pearson (U. Virginia)
and D. Lipman (National Library of
Medicine) pioneered this approach with
an algorithm called FASTA.
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Figure 8. An Illustration of
Dynamic Programming
The two sequences are those shown in

Figure 7, and the scoring scheme is the

simple one where the cost of both mis-

matches and indels is 1. The matrix shows

the sc~res of all optimal alignments of

initial segments of the two sequences. The

first row and first column of the matrix give

the trivial initialization scores, equal to the

costs of simply deleting the corresponding

initial segments. The matrix is then filled in

one row at a time, from top to bottom and

left to right. The induction step described

in the text may be illustrated with the matrix

cell containing a 1 boxed in red [the (4, 3)

element]. The value of 1 in this cell is cal-

!), the (4, 2), and the (3, 3) ceils (all highlight-

ed) as follows. The best score for aligning ACAG of the top sequence with ACA of the side

sequence must logically include one of three shorter alignments: (1) An alignment of

ACA from the top sequence with AC from the side sequence. The best score of such an

alignment is 1 on the (3, 2) cell]. (2) An alignment of ACAG from the top sequence with AC

from the side sequence. The best score of such an alignment is 2 [in the (4, 2) cell]. (3) An

alignment of ACA from the top sequence with ACA from the side sequence. The best score

of such an alignment is O ~n the (3, 3) cell]. In case 1 the rule given in the main text calls

for extending the alignment of ACA with AC to an alignment of ACAG and ACA by a mis-

match of G with A, which would give a score of 2 for the boxed element. In case 2, the

alignment between ACAG and AC is extended to an alignment between ACAG and ACA by

a deletion of the A at the end of the second sequence, giving a score of 3. Finally, case 3

requires a deletion of G from the first sequence, resulting in a score of 1. The best of these

three scores is 1, so this is what appears in the box. Once the matrix is full, the program

chooses the best score along the right and bottom edges, and works backwards through

the matrix to find what shorter alignments gave rise to this best score. The black line

shows the set of best shorter alignments, and hence the best alignment, for these two

sequences. Given the scoring system used, the best alignment is that shown in Figure 7.

An even faster algorithm called BLAST
(Basic Local Alignment Search Tool) has
been developed by S. Altschul, W. Gish,
W. Miller, E. Myers, and D. Lipman,
at the National Library of Medicine,
Pennsylvania State University, and
University of Arizona. BLAST first
compiles a list of the words in the query
sequence, then expands it to include all
words “near” these—that is, such that
the score of a no-gap alignment with
one of the words in the query sequence
meets a certain cutoff—and then uses the

—

hash table to find promising sequences
for more detailed analysis. On such
sequences BLAST extends the word
matches to longer segment matches,
but does not perform the full dynamic-

programming algorithm. Running with
typical parameters on a Sun Sparcstation,
BLAST can search GenBank in about
twenty seconds. VWh these algorithms
there is always a chance of missing
an unusual alignment that does not fall
within the initial pre-screening criteria.
However, most investigators consider
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the trade-off of sensitivity for speed to
be quite acceptable.

The amount of sequence data will
continue to grow rapidly. However with
accompanying advances in hardware,
and with refinements of current algo-
rithms, it appears that comparing new
sequences with the corpus of known data
will remain practical, and an important

source of insight.
l?inding genes. The central functional

component of the genome is the gene,
which may be defined in computational
terms as a pattern imposed on the DNA
sequence, resulting in a protein (or,
sometimes, RNA) product. (See “The
Anatomy of a Gene” in “Understanding
Inheritance.”) At the present time there
is no sure way, either experimental or
computational, to locate all the genes
in a DNA sequence. However compu-
tational techniques can provide a very
useful starting point in locating likely
candidates for genes. The techniques
are particularly well developed for
finding genes coding for RNA that is
not translated into protein. For instance,
G. Fichant and C. Burks of LANL have
developed a highly effective algorithm
for finding tRNA genes. The rest of this
discussion will refer only to the more
complex problem of finding protein-
cod!ing genes.

Computer recognition of genesis not a
simple problem. As far as we understand
at tlhe moment, there are no simple, local,
key patterns that one can use to detect
the presence of genes. For example,
every triplet of bases that occurs as a
codon in genes (where it stands for a
particular amino acid; see “The Genetic
Code” in “Understanding Inheritance”)
also occurs many millions of times
outside of genes, with no meaning that
we yet recognize. Thus solving the
gene-recognition problem depends on
integrating information from a number
of clues spread out over thousands of
bases of sequence.

In the long run, as we seek to under-
stand how the genome works, our hope
is to know how the cell recognizes
genes. That is, we want to know
what the enzymes are that control
gene expression and how they recognize
control sites on the DNA. Much progress
has been made in elucidating the control
of transcription and translation of genes
in prokaryotes (simple one-celled organ-
isms without nuclei). But the control
of gene expression in humans is much
more complicated, and the computer
recognition of human control elements
is still in its infancy.

There is, however, another approach.
While we do not yet know enough about
DNA-protein interaction to recognize
genes the way the cell does, we can
recognize certain patterns in a gene
region that are side-effects of the way
the gene is built. The simplest pattern is
called an open reading frame. Reading
frames are the six possible ways in which

any stretch of DNA can be interpreted as
a string of codons, depending on which
strand is read and on whether a given
base is interpreted as the first base of
a codon, the second, or the third. A
reading frame is said to be open in a
region where it contains no stop codons,
which are the triplets of bases that signal
the end of translation of mRNA into
protein. (See “The Genetic Code” and
“Protein Synthesis” in “Understanding
Inheritance.”) In most organisms the stop
codons on the sense strand of a gene are
TAG, TAA, and TGA. (The sense strand
has a base sequence equivalent to that
of the mRNA. ) Figure 9 shows the three
reading frames of one strand of a viral
sequence; stop codons are marked.

Since the genes of prokaryotes (and
bacterial viruses) are uninterrupted,
the protein-coding portions of their
genes must lie in long continuous open
reading frames. Most prokaryotic genes
consist of at least fifty codons, and
more typically hundreds, which do not

include any stop codons. On the other
hand, an entirely random sequence of
bases contains stop codons on average
about once in twenty-one triplets in

each reading frame. Therefore long
open reading frames in prokaryotic and
bacteriophage genomes are likely to
contain genes. The third reading frame
in Figure 9 is an example.

To find genes in eukaryotic genomes,
one must look for more subtle patterns,
mainly because eukaryotic genes are

divided into exons (protein-coding re-
gions) separated by introns (non-coding
regions). Long open reading frames
are still good candidates for exons, but
some exons are as short as ten base
pairs. Moreover, eukaryotic genomes
contain long open reading frames that
are not expressed. Therefore attention
has turned to sequence patterns that
distinguish coding from non-coding
sequence. In the main, these patterns
arise because coding sequences obey
what are called codon preference rules.
In most cases the same amino acid
can be specified in genes by any of
several synonymous codons. This
latitude in choice of codon seems to
be exploited systematically, in such
a way that different bases are more
common in different codon positions.
For example T occurs more often at the
second position of codons than at the first
or third. The periodicity arising from
these preferences is strikingly illustrated
in the autocon-elation functions of the

individual bases. Figure 10 shows
the autocorrelation functions for the
occurrences of T in coding and non-
coding regions.

A variety of statistical techniques can
be used to detect the nonrandom choice
of triplets in coding regions. Such
measurements can give an algorithm
which, on a sample of about 150 bases
of sequence, can differentiate protein
coding from noncoding regions about 95
percent of the time.
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The translated sequence starting from position 1

5214 5184

‘CGC CTC GGC CTC TGA GCT ATT CCA GAA GTA GTG AGG AGG CTT TTT TGG AGG CCT AGG CTT
Arg Leu Gly Leu ~~nd~ Ala I/e Pro Glu Val Val Arg Arg Leu Phe Trp Arg Pro Arg Leu

5154 5124

TTG CAA AAA GCT TTG CAA AGA TGG ATA AAG TTT TAA ACA GAG AGG AAT CTT TGC AGC TAA
Leu Gln Lys Ala Leu Gln Arg Trp He Lys Phe [~~] Thr

.. .,,
Glu Arg Asn Leu Cys Ser ‘End.. ....

5094 5064

‘TGG ACC TTC TAG GTC TTG AAA GGA GTG CCT GGG GGA ATA TTC CTC TGA TGA GAA AGG CAT3’;-...,.....
Trp Thr Phe ,~ncll Val Leu Lys Gly Val Pro Gly Gly Ile Phe Leu @@, ~$@ Glu Arg His

Tkle translated sequence starting from position 2

5213 5183

5(SCC TCG GCC TCT GAG CTA TTC CAG AAG TAG TGA GGA GGC TTT TTT GGA GGC CTA GGC TTT

Ala Ser Ala Ser Glu Leu Phe Gln Lys ~mfi~ [~~~ Gly Gly Phe Phe Gly Gly Leu Gly Phe

5153 5123

“rGC AAA AAG CTT TGC AAA GAT GGA T&A_ AGT TTT AAA CAG AGA GGA ATC TTT GCA GCT AAT

Cys Lys Lys Leu Cys Lys Asp Gly ~J-~ Ser Phe Lys Gln Arg Gly Ile Phe Ala Ala Asn

5093 5063

(2GA CCT TCT AGG TCT TGA AAG GAG TGC CTG GGG GAA TAT TCC TCT GAT GAG AAA GGC ATA3’

Gly Pro Ser Arg Ser ~.rifl~ Lys Glu Cys Leu Gly Glu Tyr Ser Ser Asp Glu Lys Gly Ile

The translated sequence starting from position 3

5212 5182

‘(;CT CGG CCT CTG AGC TAT TCC AGA AGT AGT GAG GAG GCT TTT TTG GAG GCC TAG GCT TTT
Pro Arg Pro Leu Ser Tyr Ser Arg Ser Ser Glu Glu Ala Phe Leu Glu Ala ~&i& Ala Phe

.....rr.;

5152 5122

GCA AAA AGC TTT GCA AAG ~jfi$/GAT AAA GTT TTA AAC AGA GAG GAA TCT TTG CAG CTA ATG
Ala Lys Ser Phe Ala Lys .%%$l Asp Lys Val Leu Asn Arg Glu Glu Ser Leu Gln Leu Met?.:..:..>...4

5092 5062

GAC CTT CTA GGT CTT GAA AGG AGT GCC TGG GGG AAT ATT CCT CTG ATG AGA AAG GCA TAT3
Asp Leu Leu Gly Leu Glu Arg Ser Ala Trp Gly Asn Ile Pro Leu Met Arg Lys Ala Tyr

Figure!9. A DNA Sequence in Three Reading Frames
Thenuc16!otides numbered 5243 to50620f thegenome of thesimian virus SV40 are shown. (The strand depicted istheone knownto

bethe sense strand in this region.) Also shown arethethree possibilities forthetranslation of thesequence, each using a different

reading frame, or division of the sequence into triplets of nucleotides. In this part of the SV40 genome, the first two reading frames

depicted contain many stop codons (translated as “END” and highlighted), so the region does not code for proteins when read in those

frames. In the third reading frame (boxed), on the other hand, there is a long region without stop codons—a promising candidate to be

a protein-coding region. In fact, experiments have demonstrated that the sequence shown does include the beginning of a gene, whose

translation starts with the highlighted ATG codon. (In the great majority of mRNAs, translation starts with AUG, corresponding to ATG

in the serlse strand of the DNA and to methionine in the protein product.) (Adapted from a figure by Maxine Singer and Paul Berg.

Genes and Genorrres: a Changing Perspective. Mill Valley, CA: University Science Books, 1991.)
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Figlure 10. Periodicity of T Due to Codon Preference Rules
For each value of the separation n, the number of occurrences of the pattern T . . . T, with n nucleotides between the two T’s, was counted.

Plotted is the percent difference of that number from the number of such pairs expected if nucleotides occurred at random. Results are

shown for all the coding sequences (a) and all the non-coding sequences (b) in GenBank when this study was performed (1982). Since

T occurs preferentially at the second codon position, in coding regions the percent difference at n = 2, 5, 8 . . . is noticeably large. T’s

separated by two nucleotides, for instance, are at corresponding positions in consecutive codons. No such pattern appears in non-coding

regions. Results for the other bases and for pairs of unlike bases show similar differences between coding and non-coding regions.

Research continues to find ever more
accurate discrimination methods. R. Far-
ber, A. Lapedes (both of Los Alamos),
and K. Sirotkin (National Institutes of
Health) report that a single-layer neural
net reading each group of six consecutive
bases can differentiate exonic from
intronic sequences 180 bases long with
a sensitivity well over 99 percent. With
accuracies of 95 percent and sensitivities
of 99 percent already in hand, the main
hindrance to further development may

soon be the accuracy of the databases.
Thcmgh every care is taken by both
investigators and database staff to make
annotation both complete and correct,
it is quite possible that the database
annotation as to whether regions are
coding or non-coding, by which these

algorithms are measured, contains errors
or omissions of a few percent.

All known algorithms depending
on codon preference (so-called region
methods) are rather poor at picking
out the precise endpoints of coding
regions. Thus current emphasis in

this field is shifting towards combin-
ing region methods with recognition
methods for biochemically active sites
of transcription and translation initiation,
intron splicing, etc. Two such systems
have now been described in print and
publicly disseminated: GM (for Gene
Modeler), written by C. Fields (National
Institutes of Health) and C. Soderlund
(Los Alamos), and GeneID, written by
R. Guigo (Los Alamos), S. Knudsen
(University of West Florida), N. Drake

(Tufts University) and T. Smith (Brown
University).

Both of these programs analyze many
different patterns over a large stretch
of sequence, integrate the results, and
present the user with a number of
possible ways in which a gene or genes
might be encoded in the sequence. The
state of the art is that programs can
suggest possible genes, and that the
real genes in the region are likely to be
at least variants of the ones proposed.
It is not possible at present to predict
the precise form of the gene or the
conditions under which it is expressed.

Prediction of structure and function
of proteins. Current techniques for
the interpretation of sequence data are
almost universally of what one might
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call a linguistic nature: they depend on
the existence or frequency of certain
simple patterns of letters in the DNA-
sequence string. However it is not to
be forgotten that the basis for all the
effects of DNA in the living cell is
the three-dimensional shape and charge
distribution of biomolecules. In the
long run, our understanding of the
biochemistry of DNA, and therefore
of the principles underlying the DNA
programming language, will depend
on our ability to relate the nucleotide
sequence of DNA, and amino-acid
sequences of protein, to the three-
dimensional molecules of life. The
promises of this infant science, a part of
structural. biology, are great, but remain
mostly in the future.

Summary
The information gained from the

Human Genome Project will reside
in a vety large database listing and
describing the program for constructing

and running the human body. With
the development of new information-
management techniques this information
will be efficiently gathered from, and
distributed to, a loosely coordinated

and global community of scientists.
Analysis tools are being developed to
read the genome program and describe
its functionality. While our knowledge
of the biological programming language,

and the tools we have to interpret it, are
both at an early stage, they are also both
very powerful, giving daily fundamental

new insights into the workings of cells,
organs and organisms, and leading to
more powerful biotechnology. ■
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